

Colour Toner -Conventional or Chemical

The Practical Issues

Topics

- Conventional Toner
 - Spheridising
- Chemical Toner Manufacture
 - Alternative Processes
- Performance Comparisons
 - Image Quality
 - Cost
 - Reliability
- The Future
 - Why are the OEMs turning to Chemical Toner?

Internal Structure

• External Additives

Conventional Toner

- Pulverization
 - Strong Points:
 - Inexpensive
 - Well understood technology
 - Weak Points:
 - Large particle size distribution
 - Higher pile heights
 - Poor interaction with OEM
 - Poor fusing
 - Wax is not encapsulated
 - Non-uniform shapes
 - Poor toner flow

Conventional Toner

• Spheridising

- Conventional toner is produced and then smoothed by heat and mechanical process.
- Strong Points
 - Less expensive than chemical
- Weak Points
 - Wide particle size distribution
 - Higher pile heights
 - Interaction with OEM
 - Poorer fusing
 - Non-uniform shape
 - Wax on surface poor flow

26/04/2007

- Emulsion Aggregation
 - Coagulation

Anatomy of a Toner Particle (Chemically Produced)

26/04/2007

Confidential

DELACAMP your global Partner

8

- Emulsion Aggregation
 - Coagulation
 - Strong Points:
 - It's a smooth potato shaped
 - Cleans easier
 - Tight particle size distribution
 - Good fusing
 - Wider colour gamut
 - Better control of particle shape
 - Glossy or matte finish
 - Weak Points:
 - Complex process
 - Difficult to use polyesters

26/04/2007

Chemical Manufacturing Methods (2)

- Suspension Polymerisation
 - High-speed Dispersion
 - Strong Points:
 - Round
 - Good Charge Control, Flow and Transfer
 - Perfect match with the OEM
 - Weak Points:
 - Difficult Cleaning
 - Heavily Patented
 - Limited to Spherical Shapes

26/04/2007 **Confidential**

- Polyester (Elongation) Polymerisation
 - Components are mixed with a solvent and processed through high shear mixing.
 - Strong Points:
 - Narrow Size Distribution
 - Wide Fusing Range
 - Weak Points:
 - Difficult to polymerise particles directly to size

Chemical Milling

- Components are mixed with a plasticiser, melted, and processed through high shear mixing.
- Strong Points:
 - Enables easy use of all conventional resins, including polyesters
 - Simple process low investment
 - Good colour gamut
 - Surface roughness can be controlled
 - Can use either dye or pigments for colorant
- Weak Points:
 - Solvent based process
 - Potential for solvent fumes during fusing
 - Poor image permanence with dye colorants

Performance Comparisons (1)

FOR A BETTER IMPRESSION

26/04/2007 Confidential

Performance Comparisons (2)

Performance Comparisons (3)

26/04/2007 **Confidential**

Performance Comparisons (4)

• Transparencies

Chemical Toner

Conventional Toner

26/04/2007

Performance Comparisons (5)

Photo Paper

Chemical Toner

Conventional Toner

26/04/2007

Performance Comparisons (6)

Conventional Toner – 7 microns Chemical Toner – 2 microns Lower pile height = Less energy to print **Higher speeds** Longer hardware life Higher image quality No "toner feel" No paper curl

Performance Comparisons (7)

Chemical toner

Pulverized toner

HP4600 Black Print Example

Percent Fusing - 75 gsm (201b) Paper

Performance Comparisons (9)

Performance Comparisons (10) Cost Savings?

26/04/2007

Performance Comparisons (11)

Encapsulation

- Wax and colorant on the inside- shell on the outside
- Benefits of encapsulation
 - Shell
 - Mechanical strength
 - Thermal stability
 - Good charging properties
 - Thickness can be varied giving different properties

- Core

- Wax on the inside gives better flow characteristics
- Charge is independent of the colorant

26/04/2007

Performance Comparisons (12) Encapsulation

Performance Comparisons (13) Toner ID

Performance Comparisons (14) Toner ID

Source: Ahamadi, A, et al, Life-cycle inventory of toner produced for xerographic processes, J Cleaner Production, 2001

26/04/2007

Confidential

DELACAMP your global Partner

Per metric ton of toner produced and used.

Source: Ahamadi, A, et al, Life-cycle inventory of toner produced for xerographic processes, J Cleaner 26/04/2007 Production, 2001 DELACAMP your global Partner 28 Confidential

Confidential

DELACAMP your global Partner

29

The Future

• Why the OEMs are turning to CPT

- In order to print at 600 DPI, the toner size must be about 6-8 microns. To print at 1200 DPI, control of particle size and shape is critical – this is virtually impossible with conventional toner. CPT is more consistent – consistent particle size and shape equals consistent charging properties.
- V.O.C.s
- Fusing Encapsulation permits good fusing at low energy levels

<u>HP OEM Toner</u>

<u>S-Toner</u>™

HP4500 Toner Analysis

D50 vol.	: 7.3um
<5 pop.	: 13%
Circularity	: 0.975
Sp	: 137deg-C

Low Gloss Poor Fixation Low Q/M

HP4500

Release 1998

<u>Speed (C/B)</u> 4/16ppm (4-cycle)

W.U. Speed 250sec (Halogen)

New S-Toner™

HP4600 Toner Analysis

D50 vol. : 6.6um <5 pop. : 22% Circularity : 0.974 Sp : 123deg-C

Low Gloss Good Fixation High Q/M HP4600

Release 2002

<u>Speed (C/B)</u> 17/17ppm (Tandem)

W.U. Speed 29sec (IH)

6.6um 22% 0.974 123deg-C

HP4700 Toner Analysis

HP4700

Release 2005

Speed (C/B) 31/31ppm (Tandem)

W.U. Speed Osec (Ceramic)

D50 vol.	: 6.9um
<5 pop.	: 22%
Circularity	: 0.978
Sp	: 119deg-C

Middle Gloss Good Fixation High Q/M

The Future

• Why the OEMs are turning to CPT

- In order to print at 600 DPI, the toner size must be about 6-8 microns. To print at 1200 DPI, control of particle size and shape is critical – this is virtually impossible with conventional toner. CPT is more consistent – consistent particle size and shape equals consistent charging properties.
- V.O.C.s
- Fusing Encapsulation permits good fusing at low energy levels
- Which OEMs use CPT
 - All major LBP OEMs!
- Monochrome CPT!
 - It's been around for years! The first CPT was made for monochrome!
- Why the Aftermarket is clinging to Conventional
 - Cost of Technology (like the cost of failure!)
 - Water Treatment
 - Intellectual Property
 - Inertia

So Why Use Chemically Produced Toner?

Quality
True Cost
The Future

QUESTIONS AND ANSWERS

